Änderungen

Zeile 76: Zeile 76:  
Magnetfelder werden in der Medizin heute überwiegend zu diagnostischen Zwecken eingesetzt. So funktioniert ein Kernspintomograph dadurch, dass er mittels eines extrem starken Magnetfeldes (4-5 Tesla) elektrische Phänomene im menschlichen Organismus auslöst, die man dann zur Erzeugung von Bildern verwenden kann.
 
Magnetfelder werden in der Medizin heute überwiegend zu diagnostischen Zwecken eingesetzt. So funktioniert ein Kernspintomograph dadurch, dass er mittels eines extrem starken Magnetfeldes (4-5 Tesla) elektrische Phänomene im menschlichen Organismus auslöst, die man dann zur Erzeugung von Bildern verwenden kann.
   −
Es ist aber auch möglich, mittels stromdurchflossener Spulen ein Magnetfeld zu erzeugen, dass eine gewisse Reichweite hat und die Nervenzellmembranen im Organismus depolarisiert. Als Effekt kommt es dann zur Auslösung eines Nervenimpulses. Man nennt diese Technik magnetische Stimulation. Die Zellmembran von Nervenzellen erzeugt durch die ständige Aktivität der Natrium-Kalium-Pumpe eine durch Ionenverschiebungen erzeugte Potentialdifferenz zwischen der intra- und extrazellulären Wand der Zelle. Der negative Pol der Membranpotentialdifferenz liegt im Zellinneren und das transmembrane Potential beläuft sich auf einen Wert von ca. -70 mV. Ein extern erzeugtes elektrisches Feld, das an die Zellmembran gebracht werden kann, ist in der Lage, auf der Außenseite der Zellmembran einen Elektronenfluss zu erzeugen und somit durch Stimulation der spannungsabhängig arbeitenden Natrium- und Kaliumkanäle (bzw. weiterer Ionenkanäle wie den Kalziumkanälen) ein Aktionspotential und damit einen Nervenimpuls auszulösen. Dies führt zu einer Erregung des Nerven bzw. zu einer Fortleitung des Aktionspotentials entlang der Zellmembran bis zur Synapse bzw. dem Zielorgan (z.B. einen Muskel).
+
Es ist aber auch möglich, mittels stromdurchflossener Spulen ein Magnetfeld zu erzeugen, das eine gewisse Reichweite hat und die Nervenzellmembranen im Organismus depolarisiert. Als Effekt kommt es dann zur Auslösung eines Nervenimpulses. Man nennt diese Technik magnetische Stimulation. Die Zellmembran der Nervenzellen erzeugt durch die ständige Aktivität der Natrium-Kalium-Pumpe eine durch Ionenverschiebungen erzeugte Potentialdifferenz zwischen der intra- und extrazellulären Wand der Zelle. Der negative Pol der Membranpotentialdifferenz liegt im Zellinneren und das transmembrane Potential beläuft sich auf einen Wert von ca. -70 mV. Ein extern erzeugtes elektrisches Feld, das an die Zellmembran gebracht werden kann, ist in der Lage, auf der Außenseite der Zellmembran einen Elektronenfluss zu erzeugen und somit durch Stimulation der spannungsabhängig arbeitenden Natrium- und Kaliumkanäle (bzw. weiterer Ionenkanäle wie den Kalziumkanälen) ein Aktionspotential und damit einen Nervenimpuls auszulösen. Dies führt zu einer Erregung des Nerven bzw. zu einer Fortleitung des Aktionspotentials entlang der Zellmembran bis zur Synapse bzw. zum Zielorgan (z.B. ein Muskel).
   −
Die erstmalige Anwendung einer magnetischen Stimulationsmethode zur Untersuchung des Gehirns wurde von Arsenne d'Arsonval im Jahr 1896 durchgeführt. Er platzierte den Kopf diverser Probanden innerhalb einer elektrischen Spule und berichtete über Lichtblitze, Schwindel und Ohnmachtsanfälle bei den Betroffenen. Eine gezielte Stimulation von Nervenzellen unter Einsatz von Magnetfeldern wurde bereits etwa ein Jahrzehnt nach Ende des II. Weltkrieges am Froschmodell durchgeführt und einige Jahre später beim Menschen vorgenommen. Man verwendete ein oszillierendes Magnetfeld mit einer Impulsdauer von 40 ms. Die resultierende lang andauernde Nervenaktivierung machte es aber unmöglich, Nerven- oder Muskelaktionen zu messen, was dazu führte, dass die Methode zeitweise nicht weiterverfolgt wurde. Die Technik wurde in den letzten Jahrzehnten weiter verbessert und mittlerweile verfügt man über Geräte, die mittels einer achterförmigen Spule (sog. Schmetterlings- oder auch Doppelspule), bei der die Windungen so angeordnet sind, dass der elektrische Strom an der Schnittstelle beider Kreise in die gleiche Richtung fließt, ein großes Magnetfeld in Spulenmitte bei größtmöglicher Fokussierung des Magnetfeldes erzeugen.
+
Die erstmalige Anwendung einer magnetischen Stimulationsmethode zur Untersuchung des Gehirns wurde von Arsenne d'Arsonval im Jahr 1896 durchgeführt. Er platzierte den Kopf diverser Probanden innerhalb einer elektrischen Spule und berichtete über Lichtblitze, Schwindel und Ohnmachtsanfällen bei den Betroffenen. Eine gezielte Stimulation von Nervenzellen unter Einsatz von Magnetfeldern wurde bereits etwa ein Jahrzehnt nach Ende des II. Weltkrieges am Froschmodell durchgeführt und einige Jahre später beim Menschen vorgenommen. Man verwendete ein oszillierendes Magnetfeld mit einer Impulsdauer von 40 ms. Die resultierende lang andauernde Nervenaktivierung machte es aber unmöglich, Nerven- oder Muskelaktionen zu messen, was dazu führte, dass die Methode zeitweise nicht weiterverfolgt wurde. Die Technik wurde in den letzten Jahrzehnten weiter verbessert und mittlerweile verfügt man über Geräte, die mittels einer achterförmigen Spule (so genannte Schmetterlings- oder auch Doppelspule), bei der die Windungen so angeordnet sind, dass der elektrische Strom an der Schnittstelle beider Kreise in die gleiche Richtung fließt, ein großes Magnetfeld in Spulenmitte bei größtmöglicher Fokussierung des Magnetfeldes erzeugen.
   −
Der elektrische Strom, der zur Auslösung des Aktionspotentials bzw. zur Depolarisierung der Zellmembran notwendig ist, kann durch ein ständig seine Richtung änderndes Magnetfeld induziert werden. Im Rahmen der sog. transkraniellen elektromagnetischen Stimulation (transcranial magnetic stimulation = TMS) werden zum Zwecke der Impulsauslösung an der Nervenzelle deshalb starke elektrische Ströme durch eine am Schädel des Untersuchten aufliegende Spule geführt, wodurch es in der Nähe der Spule zur Ausbildung eines magnetischen Feldes nach dem Faraday'schen Gesetz kommt.
+
Der elektrische Strom, der zur Auslösung des Aktionspotentials bzw. zur Depolarisierung der Zellmembran notwendig ist, kann durch ein ständig seine Richtung änderndes Magnetfeld induziert werden. Im Rahmen der so genannten transkraniellen elektromagnetischen Stimulation (transcranial magnetic stimulation = TMS) werden deshalb zum Zwecke der Impulsauslösung an der Nervenzelle starke elektrische Ströme durch eine am Schädel des Untersuchten aufliegende Spule geführt, wodurch es in der Nähe der Spule zur Ausbildung eines magnetischen Feldes nach dem Faraday'schen Gesetz kommt.
    
Da sich nach dem Faraday'schen Prinzip um jeden stromdurchflossenen Leiter ein Magnetfeld bildet, erzeugt der Stromfluss ein magnetisches Feld um die stromdurchflossene Spule des TMS-Gerätes. Dieses Magnetfeld ist desto stärker, je höher der Strom ist, der durch die Spule fließt. Das Magnetfeld breitet sich durch den Raum aus und durchdringt auch die Schädelkalotte, auf der die Spule des TMS-Gerätes für gewöhnlich aufliegt, ohne durch das Gewebe wesentlich abgeschwächt zu werden. Eine Abschwächung erfolgt nur durch die zunehmende Distanz von der Spule. Im ZNS-Gewebe unterhalb der Schädelkalotte erzeugt das Magnetfeld (B), solange Strom durch die Spule (Coil) fließt, ein elektrisches Feld, dessen Polarisierung entgegengesetzt zu jener des Stroms in der Spule ist. Entlang des so erzeugten elektrischen Feldes (E) innerhalb des ZNS-Gewebes kommt es zu einem Elektronenfluss.
 
Da sich nach dem Faraday'schen Prinzip um jeden stromdurchflossenen Leiter ein Magnetfeld bildet, erzeugt der Stromfluss ein magnetisches Feld um die stromdurchflossene Spule des TMS-Gerätes. Dieses Magnetfeld ist desto stärker, je höher der Strom ist, der durch die Spule fließt. Das Magnetfeld breitet sich durch den Raum aus und durchdringt auch die Schädelkalotte, auf der die Spule des TMS-Gerätes für gewöhnlich aufliegt, ohne durch das Gewebe wesentlich abgeschwächt zu werden. Eine Abschwächung erfolgt nur durch die zunehmende Distanz von der Spule. Im ZNS-Gewebe unterhalb der Schädelkalotte erzeugt das Magnetfeld (B), solange Strom durch die Spule (Coil) fließt, ein elektrisches Feld, dessen Polarisierung entgegengesetzt zu jener des Stroms in der Spule ist. Entlang des so erzeugten elektrischen Feldes (E) innerhalb des ZNS-Gewebes kommt es zu einem Elektronenfluss.
   −
Die Magnetstimulation beruht somit auf dem physikalischen Prinzip der elektromagnetischen Induktion. In einem elektrischen Leiterkreis treten Induktionsströme auf, wenn entweder die Stellung des Leiters in einem stationären Magnetfeld verändert wird oder wenn das Magnetfeld, das sich um den elektrischen Leiter befindet, sich verändert. Dabei ist die Induktionsstrom stets so gerichtet, dass er dem Vorgang, der ihn erzeugt, entgegenwirkt und ihm somit Energie entzieht. Da die Reizwirkung an Nervenstrukturen nicht durch das Magnetfeld, sondern vielmehr durch den via Magnetfeld im Gewebe induzierten elektrischen Strom verursacht wird, benötigt man für die Magnetstimulation einen möglichst kurzen Magnetfeldpuls.
+
Die Magnetstimulation beruht somit auf dem physikalischen Prinzip der elektromagnetischen Induktion. In einem elektrischen Leiterkreis treten Induktionsströme auf, wenn entweder die Stellung des Leiters in einem stationären Magnetfeld verändert wird oder wenn das Magnetfeld, das sich um den elektrischen Leiter befindet, sich verändert. Dabei ist der Induktionsstrom stets so gerichtet, dass er dem Vorgang, der ihn erzeugt, entgegenwirkt und ihm somit Energie entzieht. Da die Reizwirkung an Nervenstrukturen nicht durch das Magnetfeld, sondern vielmehr durch den via Magnetfeld im Gewebe induzierten elektrischen Strom verursacht wird, benötigt man für die Magnetstimulation einen möglichst kurzen Magnetfeldpuls.
   −
Der Stromfluss durch die Spule erfolgt in einem Kreislaufsystem, der einen aufladbaren Kondensator und einen Thyristor (Halbleiterschalter, der hohe Spitzenströme in kurzer Zeit schalten kann und zur Entladung des Kondensatorstroms in die Spule dient) enthält. Der Kondensator, der zunächst mit 2.000 - 3.000 Volt aufgeladen wird, wird durch das Öffnen bzw. Schließen des Thyristors entladen. Der Strom fließt durch einen elektrischen Widerstand zur Spule und dann wieder zurück über eine Diode, die dazu beiträgt, die Aufheizung der Spule und den Stromverbrauch zu reduzieren.
+
Der Stromfluss durch die Spule erfolgt in einem Kreislaufsystem, das einen aufladbaren Kondensator und einen Thyristor (Halbleiterschalter, der hohe Spitzenströme in kurzer Zeit schalten kann und zur Entladung des Kondensatorstroms in die Spule dient) enthält. Der Kondensator, der zunächst mit 2.000 - 3.000 Volt aufgeladen wird, wird durch das Öffnen bzw. Schließen des Thyristors entladen. Der Strom fließt durch einen elektrischen Widerstand zur Spule und dann wieder zurück über eine Diode, die dazu beiträgt, die Aufheizung der Spule und den Stromverbrauch zu reduzieren.
   −
Die Reichweite des Magnetfeldes und damit die Stärke des induzierbaren elektrischen Stromflusses ist begrenzt. Beträgt bei voller Reizstärke die Felddichte bei 3 cm noch ca. 1,2 Tesla, fällt sie bereits bei 5 cm Entfernung auf 0,6 Tesla ab und unterschreitet bei einer Distanz von 10 cm die Grenze von 0m2 Tesla. Bei  cm Entfernung liegt die Magnetfelddichte nur noch bei etwa 10% des Ausgangswertes. Bereits eine kleine Änderung des Spulenabstandes von 1 cm erzeugt eine Verminderung der Magnetfelddichte von 0,1 Tesla am Wirkungsort. Somit haben anatomische Gegebenheiten wie die Schädeldicke bereits einen großen Einfluss auf die erforderliche Reizstärke. Das führt dazu, dass entsprechende Stimulationsgeräte mit hohen Spannungen (bis 3.000 Volt), hohem Stromfluss (bis 8.000 Ampere) und extrem kurzen Zeitspannen (100 µs) in den Spulen arbeiten müssen, damit überhaupt genügend Strom im Gewebe induziert werden kann. Die Geräte sind für den Laien leicht erkennbar, denn sie machen Lärm während ihrer Schaltzeit. Der Knall jedes Impulses kann so laut sein, dass Ohrenschützer getragen werden müssen.
+
Die Reichweite des Magnetfeldes und damit die Stärke des induzierbaren elektrischen Stromflusses ist begrenzt. Beträgt bei voller Reizstärke die Felddichte bei 3 cm noch ca. 1,2 Tesla, fällt sie bereits bei 5 cm Entfernung auf 0,6 Tesla ab und unterschreitet bei einer Distanz von 10 cm die Grenze von 0,2 Tesla. Bei  cm Entfernung liegt die Magnetfelddichte nur noch bei etwa 10% des Ausgangswertes. Bereits eine kleine Änderung des Spulenabstandes von 1 cm erzeugt eine Verminderung der Magnetfelddichte von 0,1 Tesla am Wirkungsort. Somit haben anatomische Gegebenheiten wie die Schädeldicke bereits einen großen Einfluss auf die erforderliche Reizstärke. Das führt dazu, dass entsprechende Stimulationsgeräte mit hohen Spannungen (bis 3.000 Volt), hohem Stromfluss (bis 8.000 Ampere) und extrem kurzen Zeitspannen (100 µs) in den Spulen arbeiten müssen, damit überhaupt genügend Strom im Gewebe induziert werden kann. Die Geräte sind für den Laien leicht erkennbar, da sie während ihrer Schaltzeit laute Geräusche produzieren. Der Knall jedes Impulses kann so laut sein, dass Ohrenschützer getragen werden müssen.
   −
Für den Patienten kann man in Sachen "Magnetfeldtherapie" bisher eine grobe Leitlinie geben. Es gibt zwar die technische Möglichkeit, mit sehr dichten Magnetfeldern neurologische Effekte durch das Auslösen von Nervenimpulsen (sog. magnetisch evozierten Potentialen) zu bewirken, aber diese Geräte stehen nur in wenigen Universitäten auf der Welt und es gibt nur eine Handvoll Gerätehersteller, die man bei http://www.biomag.helsinki.fi/tms/provide.html nachlesen kann. Alle diese Geräte fallen in die seriöse Rubrik der sog. nicht-invasiven, schmerzfreien, kortikalen Stimulation mit Magnetfeldern. Die Geräte sind ausgesprochen teuer und sie stehen mit Sicherheit nicht in der Praxis eines Heilpraktikers oder Arztes.
+
Für den Patienten kann man in Sachen "Magnetfeldtherapie" bisher eine grobe Leitlinie geben. Es gibt zwar die technische Möglichkeit, mit sehr dichten Magnetfeldern neurologische Effekte durch das Auslösen von Nervenimpulsen (sog. magnetisch evozierten Potentialen) zu bewirken, jedoch befinden sich diese Geräte in nur wenigen Universitäten auf der Welt. Dementsprechend ist auch die Liste der Gerätehersteller, die man bei http://www.biomag.helsinki.fi/tms/provide.html nachlesen kann, begrenzt. Alle diese Geräte fallen in die seriöse Rubrik der so genannten nicht-invasiven, schmerzfreien, kortikalen Stimulation mit Magnetfeldern. Die Geräte sind ausgesprochen teuer und stehen mit Sicherheit nicht in der Praxis eines Heilpraktikers oder Arztes.
    
==Pulsierende Magnetfeldtherapie zu Heilzwecken ist bis heute unbewiesen==
 
==Pulsierende Magnetfeldtherapie zu Heilzwecken ist bis heute unbewiesen==
8.396

Bearbeitungen