EZ-Wasser

Aus Psiram
Zur Navigation springen Zur Suche springen
Das EZ-Wasser soll sich an der Grenzfläche zwischen einer wasseranziehenden (hydrophilen) Oberfläche und dem freien Wasser - in Schichten angeordnet - befinden (Quelle: Pollack 2013)

EZ-Wasser (EZ Water, Exclusion Zone Water, H9 Water, hexagonales Wasser, auch EC-Wasser) soll nach einer Hypothese von Gerald Pollack Wasser entsprechen, das sich an der Grenzfläche zwischen flüssigem Wasser und einer hydrophilen (wasseranziehenden) Oberfläche bilde. In einer dünnen Schicht solle dieses Wasser einen halbkristallinen Zustand aufweisen und frei von jeglicher Verunreinigung sein. Diesen Bereich an der Grenzfläche bezeichnet er als Exclusion Zone (EZ) (Ausschlusszone, weil frei von anderen Substanzen). Den hypothetischen halbkristallinen Zustand deutet er als den "4. Aggregatzustand des Wassers", von dem üblicherweise nur drei Aggregatzustände bekannt sind (fest, flüssig und gasförmig).

Die räumliche Anordnung der Wassermoleküle in der Ausschlusszone entspräche einem Molekülgitter mit hexagonaler (sechseckiger) Anordnung, weshalb das Wasser auch als hexagonales Wasser bezeichnet wird. Die Summenformel des Wassers in der Ausschlusszone sei nicht - wie allgemein bekannt - H2O, sondern H3O2. Die Behauptungen von Pollack werden durch keine unabhängigen Studien oder Beobachtungen gestützt. Die wenigen Veröffentlichungen zum Thema "EZ Water" stammen mit einer Ausnahme[1] alle samt von Pollack selbst.

Verbreitet werden die - von wissenschaftlicher Seite kaum beachteten - Thesen durch seine populärwissenschaftlichen Bücher über EZ-Wasser. Das Thema findet entsprechend nur Anklang in pseudowissenschaftlichen und esoterischen Kreisen.[2] Es wird behauptet, man könne EZ-Wasser in größeren Mengen herstellen und auch lagern. Dazu wären diverse gesundheitliche Vorteile mit der Verwendung des Wassers verbunden und es sei eine Erklärung für andere Phänomene, für die es bisher keine wissenschaftliche Grundlage gibt (z.B. Homöopathie).

H3O2

Eine Substanz mit der Summenformel H3O2 wird nach unterschiedlichen Quellen als Dioxidanium, Dioxidanylium oder Hydroperoxonium bezeichnet. Auch wird irrtümlicherweise behauptet, dass der Substanz die CAS-Nummer 60593-56-8 zugeordnet sei. Die Substanz ist vielmehr Diskussionsgegenstand im alternativmedizinschen Bereich und wird zur Glaubhaftmachung von Behauptungen zur Homöopathie und zahlreicher Scharlatanerie- und Wellnessprodukte herangezogen. Pollacks Hypothesen um sein EZ-Wasser haben zahlreiche Hersteller animiert, Geräte anzubieten, die angeblich in der Lage seien, EZ-Wasser zu produzieren. In diesem Zusammenhang werden dem EZ-Wasser stets ausschließlich positive Eigenschaften zugeschrieben. In der Werbung werden Strukturformeln (auch als räumliche Zeichnungen) zum EZ-Wasser veröffentlicht (siehe Abbildung rechts).

In der wissenschaftlichen Chemie bilden einzelne Wassermoleküle in flüssigem Zustand tetraederförmige Wassercluster, die sich temperaturabhängig ständig neu bilden und wieder auflösen. Die Lebensdauer einer Wasserstoffbrückenbindung liegt dabei typischerweise im Bereich von 1–20 ps (ps = Pikosekunde = 10-12 Sekunden). Stabile quasikristalline Strukturen von Wasser im flüssigen Zustand sind nicht bekannt und auch sehr unwahrscheinlich.[3]

Der Schweizer Werbefachmann Robert Zach (geb. 1961) behauptet, den hypothetisch gebliebenen "4. Aggregatzustand des Wassers" und damit das "EZwasser" entdeckt zu haben. Pollack sei es lediglich zeitlich nach ihm gelungen, diesen wissenschaftlich nachzuweisen. Zach ist Inhaber der Firma ZARO Biotec, einem Hersteller von Scharlatanerieprodukten zur Wasserbelebung und zum Schutz vor Elektrosmog aus CH-6390 Engelberg in der Zentralschweiz. Ein weiterer Anbieter ist der deutsche Ingenieur und Autor Dietmar Ferger.

Behauptete chemische und physikalische Eigenschaften

Räumliche Anordnung der Wassermoleküle im (hypothetischen) hexagonalem Wasser, wie Pollack es sich vorstellt (Oxygen= Sauerstoffatome, Hydrogen= Wasserstoffatome) (Quelle: Pollack 2013).

Das von Pollack gemeinte EZ-Wasser habe ein anderes Verhältnis von Wasserstoff zu Sauerstoff als herkömmliches Wasser, bei dem auf ein Sauerstoffatom zwei Wasserstoffatome kommen. Das Molekulargewicht sei 35 g/mol gegenüber 18 g/mol bei Wasser. Andere Schreibweise der Summenformel: HO-(O+)-H2. Das Dioxidanium verdampfe erst bei 150,2° Celsius auf Meereshöhe (1013 hPa).[4][5]

Pollack schreibt EZ-Wasser weitere veränderte physikalische Eigenschaften gegenüber normalem Wasser zu: es habe eine höhere Viskosität, eine höhere Absorption infraroter Strahlung (IR) und einen erhöhten pH-Wert (alkalischer als normales Wasser). Des Weiteren sei das Wasser positiv aufgeladen. Da es physikalisch unmöglich ist, dass es ohne Ladungstrennung zu einer Aufladung kommt, postuliert er, dass sich im freien Wasser eine negative Aufladung ergeben müsse. Dieser Potentialunterschied könne nur durch einen Energieeintrag erfolgen, der Pollack zufolge durch Absorption von elektromagnetischer Strahlung (Licht) zustande komme. Er behauptet, dass die Ausschlusszone bei erhöhter Strahlung einen höhere Dicke aufweise.

Eine weitere Behauptung in der Werbung zu EZ-Wasser-Produkten bezieht sich auf einen angeblichen unendlich großen spezifischen elektrischen Widerstand. Es sei demnach nicht leitfähig. Auch falle EZ-Wasser (wegen einer behaupteten "Widerstandslosigkeit") mit der zehnfachen Geschwindigkeit wie andere Gegenstände zu Boden, quasi wie im Vakuum. Das ist physikalisch unmöglich.

Pollack behauptet auch, dass die Wasserbrückenbildung (gemeint sind horizontale Verbindungen aus deionisiertem (reinen) Wasser nach Anlegung einer Hochspannung) nur mit Hilfe seiner Theorie zu EZ-Wasser erklärbar sei. Auch die österreichische Firma Grander beruft sich auf Pollack in der Werbung zu ihrem Wunderprodukt Grander-Wasser.

Behauptete Vorkommen

Nach Pollack komme EZ-Wasser natürlicherweise in Regenwasser, Gletschern, Flüssen und in Wasserbrunnen vor. Wasser im menschlichen Blut soll zu 95 % aus EZ-Wasser bestehen. Nach Pollack trinke der Mensch zwar herkömmliches Wasser (H2O) und nehme es mit der Nahrung zu sich, jedoch enthielten menschliche Zellen kein Wasser, sondern EZ-Wasser mit der Summenformel H3O2. Während einerseits behauptet wird, dass EZ-Wasser in tiefliegenden Wasserschichten vorkomme, heißt es im Widerspruch dazu andererseits, dass EZ-Wasser erst an der Erdoberfläche durch Lichtstrahlung und andere Strahlungen entstehe.

Wissenschaftliche Einordnung [Anmerkung 1]

Pollack hatte seine Entdeckung an einem speziellem Polymer namens Nafion gemacht. Dabei handelt es sich um eine Abwandlung von Teflon (PTFE), bei dem wasserbindende Sulfonsäurestrukturen in die Molekülstruktur eingebunden sind. Das hat unter anderem zur Folge, dass sich dessen Oberfläche sehr hydrophil (wasseranziehend, gut benetzbar) verhält. Es beeinflusst aber auch andere chemische Eigenschaften - wie den pH-Wert - im oberflächennahen Kontaktbereich mit Wasser. Hier hatte er beobachtet, dass sich sehr feine Kunststoffteilchen (Latex) , die im Wasser fein verteilt (dispergiert) waren, von der Oberfläche weg bewegten. Diese Beobachtung wurde von anderen Wissenschaftlern bestätigt und gilt als gut belegt. Seine weiteren Schlussfolgerungen und Beobachtungen, die er daraufhin gemacht haben wollte, sind allerdings sehr unwahrscheinlich und lassen sich leicht durch etablierte Erklärungen widerlegen.

So behauptet er weiter, nicht nur unlösliche Partikel werden von der Oberfläche weggestoßen, sondern auch gelöste Stoffe - wie Salze, was zu einem "hochreinem Wasser" führen würde. Dies kann von keinem anderen Forscherteam bisher reproduziert werden, zumal es sehr schwer festzustellen ist. Die Ausschlusszone ist - wie von Pollack behauptet - nur einige hundert µm dick. Diese dünne Zone kann nur sehr schwer spezifisch bestimmt werden und ist durch die Porosität der (Nafion-)Oberfläche sehr anfällig für Verunreinigungen und Störungen aller Art. Dies führt schnell zu Fehlmessungen und Artefakten, die durch die Messbedingungen selbst zustande kommen, zumal man sehr dicht an einer chemisch aktiven Oberfläche analysiert.

Dass sich Wassermoleküle an einer hydrophilen Schicht in anderer Formation anordnen als im freien Wasser, ist nichts Neues und nicht ungewöhnlich: es zeigt, dass die Wassermoleküle mit der Oberfläche in Wechselwirkung stehen. Man findet das Phänomen der Ausschlusszone auch an Metalloberflächen und mit anderen polaren Flüssigkeiten als Wasser, etwa organische Lösemittel. Die Phänomene sind aber immer auf den Bereich unmittelbar an der Grenz- bzw. Oberfläche beschränkt. Mit diesen Phänomen beschäftigt sich die Oberflächenchemie. Man kann aber z.B. Wasser, das sich an Oberflächen anders strukturiert, nicht extrahieren, ohne dass die Struktur verloren geht, da der Effekt an die Oberfläche gebunden ist. Behauptungen, man könne EZ-Wasser in größeren Mengen herstellen, sind unbelegt und widersprechen allen gültigen Naturgesetzen.

Die Behauptung, die Wassermoleküle in der Ausschlusszone wären hexagonal im Sinne Pollacks (siehe Bild) angeordnet, ist ohne experimentellen Beleg und widerspricht allem, was man bisher gesichert über die Bindungsverhältnisse von Wasser weiß. Pollack sagt selbst, er könne das nicht belegen und es wäre eine reine Spekulation seinerseits. Die Summenformel H3O2, die für das hexagonal geordnete Wasser angegeben wird, ist unbekannt und die Existenz solcher Verbindungen (rein rechnerisch) unmöglich. Quantenmechanische / quantenchemische Berechnungen zeigen, dass ein solcher Stoff, sollte er existieren, höchst instabil wäre und sich explosionsartig zersetzen würde.

Die von ihm behauptete vierte Phase des Wassers, die er dem in der Ausschlusszone befindlichen Wasser zuschreibt, ist entsprechend eine reine Erfindung, die er in seinen Büchern außerhalb des wissenschaftlichen Veröffentlichungswesens (und damit nicht wissenschaftlich begutachtet) verbreitet. Wasser, in dem die Wassermoleküle in einer hexagonalen Anordnung vorliegen, kommt nur bei Eis vor. Die Anordnungsverhältnisse sind aber - im Vergleich zu Pollacks Vorstellung - wesentlich komplexer. Daneben gibt es bisher weitere 17 bekannte Modifikationen (Phasen) von Eis.

Die von Pollack behauptete Phasenänderung in der Ausschlusszone müsste mit deutlich anderen physikalischen Eigenschaften einhergehen, insbesondere mit einer geänderten Dichte. Dies zeigt sich unter anderem in einem anderen Brechungsverhalten. Die Messungen, die dazu gemacht wurden, sind nicht geeignet, einen veränderten Brechungsindex des Wassers in der Ausschlusszone zu belegen, da es an Grenzflächen (insb. der von Nafion) ebenfalls zu Änderungen des Brechungsindex kommt. Eine kristallartige Struktur könnte mit Hilfe von Röntgenbeugungs-Untersuchungen bestätigt werden; hierzu liefert Pollack keine Daten.

Statt dessen will er eine Phasenänderung anhand licht-spektroskopischer Untersuchungen festmachen, die sehr anfällig für Störungen (u.a. von kleinsten Luftblasen sind). Dazu finden sich die von ihm gemachten Abweichungen, die er einer Phasenänderung zuschreibt, auch in mit Salzen verunreinigtem Wasser. Dies hat er selbst gemessen, will es aber nicht als alternative Erklärung deuten. Die für eine Dichtebestimmung an Grenzflächen deutlich bessere Methode der Neutronenradiographie konnte demgegenüber keinen Dichteunterschied des Wassers in der Ausschlusszone feststellen. Damit konnte die Behauptung Pollacks, es handele sich um eine "vierte Phase", eindeutig widerlegt werden.

Wissenschaftliche Erklärung der Ausschlusszone

Die einzige Beobachtung, die unabhängig von Pollack auch von anderen Forschern bzw. Forschergruppen gemacht werden konnte, ist, dass sich sehr fein verteilte Plastikkügelchen im Wasser von einer hydrophilen Oberfläche weg bewegen. Genau genommen, ist dies nur für das Polymer Nafion belegt, das Pollack - ohne dessen Besonderheiten zu berücksichtigen - als allgemeines Modell für hydrophile Oberflächen, etwa der Zellmembran, verwendet. Der Effekt wurde - in viel geringerem Maße - bisher noch an Metalloberflächen gefunden, die sicher kein Modell für biologische Oberflächen sind. Alle weiteren Beobachtung, die er in und an der Ausschlusszone gemacht haben will, sind ohne Bestätigung und auch nicht plausibel.

Das Phänomen der Diffusiophorese im Modell

Das Phänomen, dass sich kleine Partikel an einer hydrophilen Oberfläche abstoßen, kann im Rahmen der etablierten wissenschaftlichen Theorien zu solchen Effekten erklärt werden. Eine Oberfläche wie die des Nafion ist chemisch aktiv, es handelt sich um einen Ionenaustauscher. Dabei werden von der Oberfläche Ionen (Protonen) in das Wasser abgegeben und entsprechende Gegenionen von der Membran aufgenommen. Dies hat zur Folge, dass sich von der Oberfläche weg ein sog. Gradient (eine an- oder absteigende Konzentration) an Ionen bildet. In diesem Gradient werden kleine Teilchen, die ebenfalls Ladungen (Ionen) auf ihrer Oberfläche tragen kommen, von der Oberfläche weg bewegt. Das Phänomen nennt sich Diffusiophorese und beschreibt solche Phänomene.[6] Im einzelnen ist der Effekt komplexer als hier angedeutet, aber er erklärt das beobachtete Phänomen auch quantitativ. Die von Pollack vermutete und nicht im Einklang mit allen bisherigen Erkenntnissen stehende Vorstellung, eine Strukturierung des Wassers - und damit eine Phasenwandlung - ist für die Erklärung der Ausschlusszone nicht nötig.

EZ-Wasser-Produkte und Markt

Produkte mit Bezug zum EZ-Wasser sind beispielsweise: Adya Clarity, Themarox, 4th Phase oder Biotite Liquid Crystal Concentrate.

Siehe auch

Literatur

  • Elton, D.C.; Spencer, P.D.; Riches, J.D.; Williams, E.D. Exclusion Zone Phenomena in Water—A Critical Review of Experimental Findings and Theories. Int. J. Mol. Sci. 2020, 21, 5041. https://doi.org/10.3390/ijms21145041
  • Wilson, Elizabeth: Watering Down Science? Unconventional water structure theories generate criticism, but don’t hamper funding. Chemical & Engineering News. Volume 87, Issue 50. 2009
  • Gerald Pollack: Fourth Phase of Water: Beyond Solid, Liquid & Vapor. 2013
  • Kamal Abu-Dari, Kenneth N. Raymond, Derek P. Freyberg (1979): "The bihydroxide (H3O2−)anion. A very short, symmetric hydrogen bond". J. Am. Chem. Soc. 101 (13): 3688–3689. doi:10.1021/ja00507a059

Weblinks

Quellennachweise

Anmerkungen

  1. Diese Zusammenfassung stützt sich im Wesentlichen auf die Beiträge von Elton et al. 2020 und Wilson 2009 (siehe Literatur) sowie auf verschiedene Artikel bei Wikipedia