Zeile 35: |
Zeile 35: |
| == Anwendungen == | | == Anwendungen == |
| | | |
− | Mittels quantenmechanischer Verschränkung ist es möglich, eine Art von Verbindung zwischen scheinbar voneinander isolierten Systemen herzustellen. Aufgrund dessen wird das Phänomen oft missbraucht, um holistische Weltbilder aller Art zu rechtfertigen. Quantenmechanische Verschränkungen zwischen getrennten Systemen aufrecht zu erhalten ist jedoch außergewöhnlich schwierig und erfordert eine möglichst vollständige Trennung von der Umgebung (d.h. vom „Rest der Welt“). Daher scheint der Versuch, Phänomene wie Spukschlösser, Magie, Voodoo, Telepathie oder Channeling durch Quantenmechanik zu erklären, zum Scheitern verurteilt zu sein. Da diesen Phänomenen aber offensichtlich eine Art „verstecktes Band“ zwischen getrennten Dingen zugrunde liegt, bietet die schwache Quantentheorie einen scheinbaren Ausweg: Ihre Anwendung auf die „Lebenswelt“ eröffnet die Möglichkeit von Verschränkungen, die nicht quantenmechanischer Natur sind und auch daher nicht an die Restriktionen der Quantenmechanik gebunden sind. Dabei lädt die Tatsache, dass kein Äquivalent zur Planck-Konstante h spezifiziert wird, zum Spekulieren ein: Da h ein Maß für die Stärke quantenmechanischer Effekte ist, können ihre Pendants in der schwachen Quantentheorie beliebig groß sein. | + | Mittels quantenmechanischer Verschränkung ist es möglich, eine Art von Verbindung zwischen scheinbar voneinander isolierten Systemen herzustellen. Aufgrund dessen wird das Phänomen oft missbraucht, um [[Holismus|holistische]] Weltbilder aller Art zu rechtfertigen. Quantenmechanische Verschränkungen zwischen getrennten Systemen aufrecht zu erhalten ist jedoch außergewöhnlich schwierig und erfordert eine möglichst vollständige Trennung von der Umgebung (d.h. vom „Rest der Welt“). Daher scheint der Versuch, Phänomene wie Spukschlösser, Magie, [[Voodoo]], [[Telepathie]] oder [[Channeling]] durch Quantenmechanik zu erklären, zum Scheitern verurteilt zu sein. Da diesen Phänomenen aber offensichtlich eine Art „verstecktes Band“ zwischen getrennten Dingen zugrunde liegt, bietet die schwache Quantentheorie einen scheinbaren Ausweg: Ihre Anwendung auf die „Lebenswelt“ eröffnet die Möglichkeit von Verschränkungen, die nicht quantenmechanischer Natur sind und auch daher nicht an die Restriktionen der Quantenmechanik gebunden sind. Dabei lädt die Tatsache, dass kein Äquivalent zur Planck-Konstante h spezifiziert wird, zum Spekulieren ein: Da h ein Maß für die Stärke quantenmechanischer Effekte ist, können ihre Pendants in der schwachen Quantentheorie beliebig groß sein. |
| | | |
| '''Beispiel 1: Transpersonale Phänomene''' | | '''Beispiel 1: Transpersonale Phänomene''' |
Zeile 43: |
Zeile 43: |
| '''Beispiel 2: Homöopathie''' | | '''Beispiel 2: Homöopathie''' |
| | | |
− | Ebenfalls von Harald Walach stammt ein Modell der Homöopathie [3], das auf der schwachen Quantentheorie basiert. Der Anspruch dieses Modells ist hoch, denn neben bekannten Beobachtungen aus der homöopathischen Praxis soll auch erklärt werden, warum homöopathische Hochpotenzen, in denen mit Sicherheit kein einziges Molekül der Urtinktur mehr vorhanden ist, dennoch eine spezifisch, weit über den Placebo-Effekt hinausgehende Wirkung haben. Walach nimmt an, dass das Homöopathikum durch die Potenzierung mit der Urtinktur, die Urtinktur über die homöopathische Anamnese wiederum mit dem Symptombild des Patienten verschränkt ist. Die Wirkung der Arznei soll demnach darin bestehen, dass die Symptome vom Patienten zum Homöopathikum – analog zur quantenmechanischen Teleportation – übertragen werden. Das homöopathische Mittel kann demnach als eine Art leerer Behälter für die Symptome angesehen werden, dessen Fassungsvermögen umso größer ist, je stärker die Ursubstanz aus ihm herausverdünnt wurde. | + | Ebenfalls von Harald Walach stammt ein Modell der [[Homöopathie]] [3], das auf der schwachen Quantentheorie basiert. Der Anspruch dieses Modells ist hoch, denn neben bekannten Beobachtungen aus der homöopathischen Praxis soll auch erklärt werden, warum homöopathische Hochpotenzen, in denen mit Sicherheit kein einziges Molekül der Urtinktur mehr vorhanden ist, dennoch eine spezifisch, weit über den Placebo-Effekt hinausgehende Wirkung haben. Walach nimmt an, dass das Homöopathikum durch die Potenzierung mit der Urtinktur, die Urtinktur über die homöopathische Anamnese wiederum mit dem Symptombild des Patienten verschränkt ist. Die Wirkung der Arznei soll demnach darin bestehen, dass die Symptome vom Patienten zum Homöopathikum – analog zur quantenmechanischen Teleportation – übertragen werden. Das homöopathische Mittel kann demnach als eine Art leerer Behälter für die Symptome angesehen werden, dessen Fassungsvermögen umso größer ist, je stärker die Ursubstanz aus ihm herausverdünnt wurde. |
| Problematisch an Walachs Modell ist wiederum, dass die Argumentation nicht über die verbale Ebene hinausgeht. Nirgends wird klargestellt, wie ein Zustand aussehen oder mit welchen Observablen gerechnet werden könnte. Daher kann eine ernsthafte Diskussion, etwa um Voraussetzungen oder Effektstärken bei den angenommenen Verschränkungen, nicht stattfinden. | | Problematisch an Walachs Modell ist wiederum, dass die Argumentation nicht über die verbale Ebene hinausgeht. Nirgends wird klargestellt, wie ein Zustand aussehen oder mit welchen Observablen gerechnet werden könnte. Daher kann eine ernsthafte Diskussion, etwa um Voraussetzungen oder Effektstärken bei den angenommenen Verschränkungen, nicht stattfinden. |
| Von Lionel R. Milgrom, einem emeritiertem Chemiker des Imperial Colleges in London, stammt ein weiteres Modell der Homöopathie, dass sich auf die schwache Quantentheorie beruft. Es wird in einer Serie von Veröffentlichungen (z.B. [4], [5]) beschrieben. Den zwei Verschränkungen aus Walachs Modell wird eine Dritte hinzugefügt („Patient-Practitioner-Remedy Entanglement“), die den Homöopathen berücksichtigt. Anders als Walach versucht Milgrom, sein Modell mit quantenmechanisch inspirierten Rechnungen weiterzuentwickeln. Es bleibt jedoch größtenteils unklar, welche Bedeutung die Variablen in seinen Rechnungen haben. Darüber hinaus wurden ihm von Kritikern zahlreiche Rechenfehler nachgewiesen [6]. | | Von Lionel R. Milgrom, einem emeritiertem Chemiker des Imperial Colleges in London, stammt ein weiteres Modell der Homöopathie, dass sich auf die schwache Quantentheorie beruft. Es wird in einer Serie von Veröffentlichungen (z.B. [4], [5]) beschrieben. Den zwei Verschränkungen aus Walachs Modell wird eine Dritte hinzugefügt („Patient-Practitioner-Remedy Entanglement“), die den Homöopathen berücksichtigt. Anders als Walach versucht Milgrom, sein Modell mit quantenmechanisch inspirierten Rechnungen weiterzuentwickeln. Es bleibt jedoch größtenteils unklar, welche Bedeutung die Variablen in seinen Rechnungen haben. Darüber hinaus wurden ihm von Kritikern zahlreiche Rechenfehler nachgewiesen [6]. |