Low Energy Nuclear Reactions

An Energetics Revolution for ALL of NASA's Missions and A Solution to Climate Change

A Solution to Climate Change and the Economic Meltdown

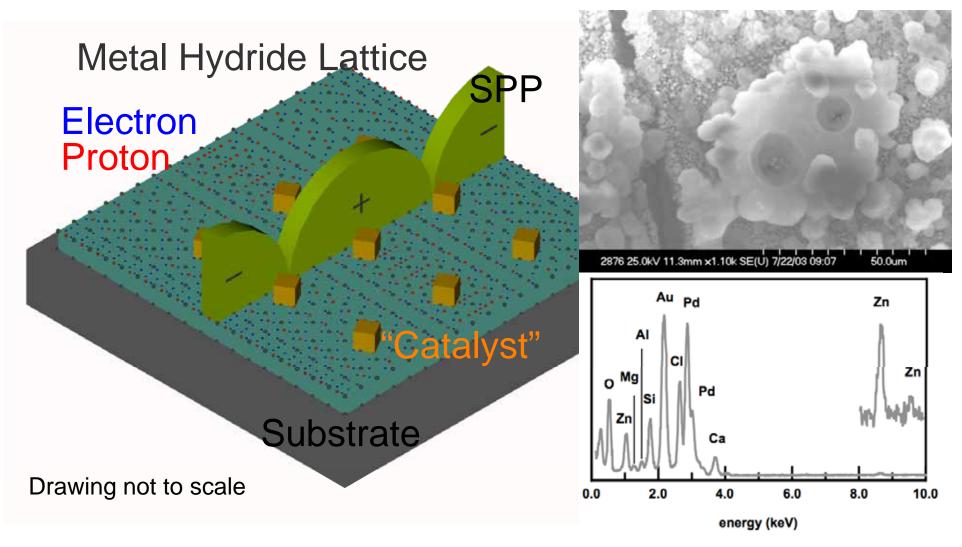
J. M. Zawodny - August 12, 2009

LENR History

- 1989 Pons & Fleischmann announce <u>Cold Fusion</u> from an electrochemical cell containing PdD
- Physics community promptly discredit the claim
- The problem was their attribution to D-D fusion
 - Energetics of overcoming the Coulomb barrier
 - High energy neutrons not observed
- P&F experiment did produce excess heat and He
- Difficult to reproduce, experiments took 100 days
- Investigation of excess heat and transmutation of elements in electrochemical cells has continued worldwide.

LENR since P&F

- Today, there are many groups around the world working on LENR, 20+ in the US alone.
- <u>Abundant evidence for excess heat</u> and element transmutation with both Deuterium and Hydrogen metal hydrides with increased reproducibility
- Wide range of successful experimental methodologies (PdD, NiH, liquid & gas phase, ...)
- Nearly every group has developed their own theory (all requiring "New Physics" or Miracles)
- All theories are based on the Strong Nuclear force and are variants of Cold Fusion
- ... except for one new theory


Widom-Larsen Theory

- Lewis G. Larsen developed a theory of LENRs (WLT) that explains ALL the evidence and along with Dr. Alan Widom published their theory in Eur. Phys. J. C (2006)
- WLT is 1st theory to not require "New Physics".
- It relies on the Weak Nuclear force which:
 - Produces a neutron via electron capture
 - Does not have a Coulomb barrier to overcome
- The theory combines QED, Condensed Matter, Nuclear, and Plasma Physics
- We (NASA) now understand this theory.

WLT Overview

- $p + e^* \Rightarrow n + \overline{\upsilon}_e$ Inhibited by 0.78MeV
- e* is a "heavy electron" allowed by QED requires high electric fields (~10¹¹V/m or 10V/Å)
- High fields result from a breakdown of the Born-Oppenheimer Approximation via a coupling of Surface Plasmon Polaritons to a collective proton resonance in the metal hydride.
- The result is an Ultra Low Momentum Neutron which is rapidly absorbed by nearby nuclei.
- Subsequent decays release significant energy.
- Select impurities/catalysts determine the overall energetics

Diagram, Image, and Data

WLT Predictions

- Reaction rate is related to the SPP amplitudes near the proton resonant frequency
- Reactions are sporadic on smooth or randomly patterned devices driven by broadband SPPs
- Reaction rate should increase for patterned / resonant devices
- Reaction rate should increase when driven at the proper frequency

WLT Energetics

- An example of the Li-Be-He cycle energetics
 - $p + e^* \Rightarrow n + \overline{\upsilon}_{e}$ Inhibited: 0.78MeV x6 = ~5MeV
 - ⁶Li + n \Rightarrow ⁷Li

 - $^{7}\text{Li} + n \Rightarrow {}^{8}\text{Li}$ $^{8}\text{Li} \Rightarrow {}^{8}\text{Be} + \beta + \upsilon_{e}$ $^{8}\text{Be} \Rightarrow {}^{4}\text{He} + {}^{4}\text{He}$ ~27MeV released to this point

- ⁴He + n ⇒ ⁵He This cycle runs twice
 ⁵He + n ⇒ ⁶He
 ⁶He ⇒ ⁶Li + β + υ_e ~3MeV x2 released here
- In this cycle 6 protons and 3 electrons are converted to a ⁶Li and 9 (anti)neutrinos with a net release of ~28MeV (other cycles exist)

Energy Density Comparison

- Fission Strong nuclear force 3% Efficient
 - ${}^{235}\text{U} + n \Rightarrow {}^{92}\text{Kr} + {}^{141}\text{Ba} + n + n + ~200\text{MeV}$
 - 88,000,000 MJ/Kg or 1,900,000 times chemical
- Fusion Strong nuclear force ~5% Efficient
 - ${}^{2}H + {}^{3}H \Rightarrow {}^{4}He + n + \sim 18MeV$
 - ${}^{2}H + {}^{2}H \Rightarrow {}^{3}H + p + \sim 4MeV$
 - or \Rightarrow ³He + n + \sim 3MeV
 - 337,000,000 MJ/Kg or 7,300,000 times chemical
- LENRs Weak nuclear force TBD% Efficient
 - 6p + 3e \Rightarrow ⁶Li + 6 $\overline{\upsilon}_{e}$ + 3 υ_{e} + 28MeV
 - ~370,000,000 MJ/Kg or <u>8,000,000 times chemical!</u>
 - W-L conservative estimate 4,000 times chemical

Ramifications

- Nuclear-like energy densities **Scalable** from mW to GW
- Little or no need for radiation shielding Portable
 - Adaptable to the full range of transportation systems
 - Wholly obviates the reasons (weight, safety, attendant costs) fission is not used
- Revolutionizes Aviation and Access to Space
 - No GHG (CO₂, H₂O, aerosols, …) concerns
 - Decouples energetics from reaction mass
 - Fuel mass essentially goes away for air-breathing applications, reduces total mass
 - Fuel is very cheap (electrolysis of H₂O)
- **Total replacement of fossil fuels** for everything but synthetic organic chemistry

Example: Aircraft

The impact LENR would have on commercial, military, and civilian/personal aircraft

- Essentially no change in mass from takeoff to landing (1% LENR efficiency would allow 2Kg H₂ to fuel a 747 on 9800km flight)
- No harmful emissions
- Increased safety
 - Non-flammable
 - Excess power (High thrust/weight)
- Increased performance
 - Payload
 - Speed
 - Altitude

Example: ETO

The impact LENR would have on Space Access

- Significantly reduced launch mass
 - Collect reaction mass on the way up
 - Collect reaction mass during aero-capture/aero-breaking
 - Collect reaction mass during reentry
- Improved Safety non-flammable
- Potential for high ISP
- Low fuel mass (burn rate) may enable horizontal take off. No need to throw mass straight up initially. Better integration with existing infrastructure.

Example: Surface Transports

The impact LENR would have on Surface Transportation

- Elimination of emissions
- Safety non-flammable
- Extended range
- Increased power
- If you can build a rocket or plane using this, you can certainly power just about any other form of transportation.

Example: Energy & Climate

- LENRs could replace Coal, Oil, Natural Gas fired power plant heat sources with minimal impact to the extant generation and distribution infrastructure
- Similarly, LENRs could be drop-in replacements for conventional nuclear reactor heat sources in nuclear power plants
- LENRs could co-generate electricity and useful heat for on-site commercial (ore processing, thermoforming, cement, ...) and consumer heating (furnace & hot water) needs
- LENR powered desalination plants could produce fresh water while simultaneously producing power (H₂) and converting dissolved CO₂ to CaCO₃ via electrolysis

Activities @ NASA LaRC

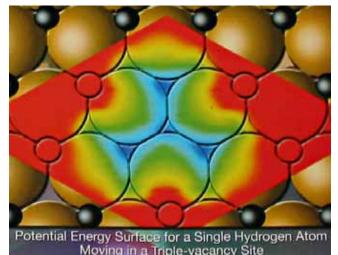
- System Architecture studies to assess impact on Aircraft and Access to Space
- Design and execute an independent experiment that demonstrates fundamental understanding of the theory and its practicality.
 - Devices designed and fabrication-ready
 - Novel experimental apparatus designed & being fabricated
 - Identifying risks and suitable facility
 - Seeking complementary measurements & analysis

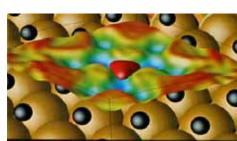
The End

Activity in the US (partial)

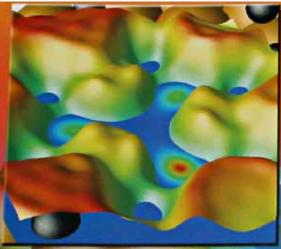
- 1. Naval Research Laboratory
- 2. Space and Naval Warfare Systems Center (SPAWARS)
- 3. U.S. Navy China Lake Naval Weapons Laboratory
- 4. Los Alamos National Lab
- 5. Massachusetts Institute of Technology, Cambridge, MA
- 6. SRI International, Menlo Park, CA
- 7. University of California, San Diego, CA
- 8. University of California, Berkeley, CA
- 9. George Washington University
- 10. Purdue University
- 11. Rice University
- 12. Montclair State University, New Jersey
- 13. University of La Verne
- 14. Texas A&M
- 15. University of Illinois, Urbana, IL
- 16. Lattice Energy, LLC
- 17. Black Light Power
- 18. JWK Technologies Corporation
- **19.** JET Thermal Products
- 20. Kiva Laboratory, LLC
- 21. Coolescence, LLC
- 22. Infinite Energy Magazine and Research Systems, Inc

New Energy Times Comment: This list is outdated and inaccurate

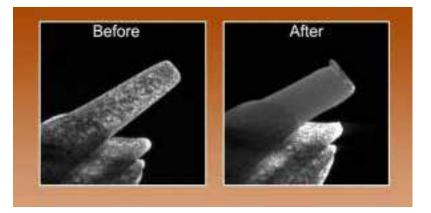

Activity Abroad (partial)


- 1. China Institute of Atomic Energy, China
- 2. Department of Physics, Tsinghua University, Beijing, China
- 3. Laboratoire des Sciences Nucléaires, Paris, France
- 4. Bhabha Atomic Research Centre, Trombay, India
- 5. ENEA, Frascati, Italy
- 6. INFN-LNF Frascati, Italy
- 7. EURESYS, Roma, Italy
- 8. University of Catania, Department of Physics Catania, Italy
- 9. Hydrogen Energy Research Agency Velletri, Italy
- 10. Energetics Technologies, Israel
- 11. Osaka National University, Japan
- 12. High Scientific Research Laboratory, Marunouchi, Japan
- 13. Mitsubishi Heavy Industries, Japan
- 14. Toyota Central Research & Development Laboratories, Inc., Aichi, Japan
- 15. P.N. Lebedev Physics Institute of Russian Academy of Sciences, Moscow, Russia
- 16. Institute of Physical Chemistry & Electrochemistry, RAS, Moscow, Russia
- 17. Moscow State University, Moscow, Russia
- 18. FSUE 'LUCH', Moscow, Russia
- 19. Joint Institute for Nuclear Research, Dubna, Russia
- 20. University Dubna, Dubna, Russia
- 21. Electrodynamics Laboratory "Proton-21" Ukraine
- 22. Kiev National Shevchenko University, Kiev, Ukraine
- 23. Institute of Microbiology and Virology, Kiev, Ukraine
- 24. Institute of problems of NPP safety, Kiev, Ukraine

New Energy Times Comment: This list is outdated and inaccurate


Next Level Questions

- Why does the hydrogen loading have to exceed an apparent minimum value?
 - How do vacancies alter the collective effects
- Do the high fields result from an inability to maintain a pseudo-solid body (quasi-crystalline) motion?


The Wave Function of a Hydrogen Atom Absorbed on Palladium Surface

Electron Charge Density of a Hydrogen Atom on Palladium Catalyst Surface

Next Level Questions

- Why is sample preparation so critical?
 - Surface layer contaminants?
 - Are cracks and other lattice defects vital?

- How can we model the generation of high fields?
 - How to take this from the parlor and into the factory?

System Components

SPP sources][Control Systems
 Electron beam 	Reactor Types	Sensors
 Ion flux 	 I: One-shot 	Thermal
 Photons 	 II: Steady state 	Fuel flow
 Plasmonics 	A: Closed	• "Throttle"
Phonons	 B: Open III: Flow-through 	System Integration
<u>Materials</u>		 Heat extraction
 Lattice 	Reactor Geometry	 Heat conversion
 Fuel/isotope 	 2-D Islands 	 Fuel system
· · ·	 3-D Pits 	
Catalyst	 Tubular flow 	 Maintenance
 Products 	 Sheet flow 	